mirror of
https://github.com/bestnite/slide-translate.git
synced 2025-10-25 16:21:01 +00:00
249 lines
9.2 KiB
Python
249 lines
9.2 KiB
Python
import base64
|
||
import os
|
||
import re
|
||
import configparser
|
||
import sys
|
||
from pathlib import Path
|
||
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
||
from docling.datamodel.base_models import InputFormat
|
||
from docling.datamodel.pipeline_options import (
|
||
PdfPipelineOptions,
|
||
)
|
||
from docling.datamodel.settings import settings
|
||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||
from docling_core.types.doc.base import ImageRefMode
|
||
from langchain_core.messages import HumanMessage, SystemMessage
|
||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||
|
||
|
||
def convert_pdf_to_markdown(input_doc_path, output_md_path):
|
||
"""Converts a PDF document to Markdown format."""
|
||
accelerator_options = AcceleratorOptions(
|
||
num_threads=8, device=AcceleratorDevice.CUDA
|
||
)
|
||
|
||
pipeline_options = PdfPipelineOptions()
|
||
pipeline_options.accelerator_options = accelerator_options
|
||
pipeline_options.do_ocr = True
|
||
pipeline_options.do_table_structure = True
|
||
pipeline_options.table_structure_options.do_cell_matching = True
|
||
pipeline_options.generate_page_images = True
|
||
pipeline_options.generate_picture_images = True
|
||
|
||
converter = DocumentConverter(
|
||
format_options={
|
||
InputFormat.PDF: PdfFormatOption(
|
||
pipeline_options=pipeline_options,
|
||
)
|
||
}
|
||
)
|
||
|
||
# Enable the profiling to measure the time spent
|
||
settings.debug.profile_pipeline_timings = True
|
||
|
||
# Convert the document
|
||
print(f"Converting {input_doc_path} to Markdown...")
|
||
conversion_result = converter.convert(input_doc_path)
|
||
doc = conversion_result.document
|
||
|
||
# List with total time per document
|
||
doc_conversion_secs = conversion_result.timings["pipeline_total"].times
|
||
|
||
doc.save_as_markdown(
|
||
filename=Path(output_md_path),
|
||
artifacts_dir=Path(
|
||
os.path.join(os.path.splitext(os.path.basename(output_md_path))[0], "image")
|
||
),
|
||
image_mode=ImageRefMode.REFERENCED,
|
||
)
|
||
print(f"Conversion took: {doc_conversion_secs} seconds")
|
||
print(f"Markdown file saved to: {output_md_path}")
|
||
|
||
|
||
def simplify_image_references_in_markdown(markdown_path):
|
||
"""Simplifies image names in the markdown file and renames the image files."""
|
||
print(f"Simplifying image references in {markdown_path}...")
|
||
with open(markdown_path, "r+", encoding="utf-8") as f:
|
||
content = f.read()
|
||
|
||
# Find all unique image paths
|
||
image_paths = set(re.findall(r"\((\S*?image_\d{6}_[a-f0-9]+\.png)\)", content))
|
||
|
||
for old_path in image_paths:
|
||
old_path_prefix = os.path.join("output", old_path)
|
||
if not os.path.exists(path=old_path_prefix):
|
||
continue
|
||
|
||
directory = os.path.dirname(old_path_prefix)
|
||
old_filename = os.path.basename(old_path_prefix)
|
||
|
||
# Create new filename, e.g., image_000000.png
|
||
parts = old_filename.split("_")
|
||
new_filename = f"{parts[0]}_{parts[1]}.png"
|
||
new_path = os.path.join(directory, new_filename)
|
||
|
||
# Rename the physical file
|
||
if not os.path.exists(new_path):
|
||
os.rename(old_path_prefix, new_path)
|
||
|
||
# Replace the path in the markdown content
|
||
new_path_in_markdown = new_path.replace(f"output{os.sep}", "")
|
||
content = content.replace(old_path, new_path_in_markdown)
|
||
|
||
# Go back to the beginning of the file and write the modified content
|
||
f.seek(0)
|
||
f.write(content)
|
||
f.truncate()
|
||
print("Image references simplified.")
|
||
|
||
|
||
def refine_and_translate_content(markdown_path, pdf_path):
|
||
"""Refines and translates the Markdown content using an LLM."""
|
||
print("Starting content refinement and translation...")
|
||
|
||
config = configparser.ConfigParser()
|
||
config.read("config.ini")
|
||
google_api_key = config.get("api_keys", "GOOGLE_API_KEY", fallback=None)
|
||
|
||
if not google_api_key:
|
||
print("Error: GOOGLE_API_KEY not found in config.ini")
|
||
return
|
||
|
||
os.environ["GOOGLE_API_KEY"] = google_api_key
|
||
try:
|
||
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0)
|
||
except Exception as e:
|
||
print(
|
||
f"Error initializing LLM. Make sure your Google API key is set correctly. Error: {e}"
|
||
)
|
||
return
|
||
|
||
try:
|
||
with open(markdown_path, "r", encoding="utf-8") as f:
|
||
markdown_text = f.read()
|
||
markdown_content = markdown_text.encode("utf-8")
|
||
|
||
with open(pdf_path, "rb") as pdf_file:
|
||
pdf_bytes = pdf_file.read()
|
||
|
||
except FileNotFoundError as e:
|
||
print(f"Error reading files: {e}")
|
||
return
|
||
|
||
prompt = """
|
||
您是一名专业的科技文档编辑和翻译。您的任务是润色一份从随附 PDF 文档自动转换而来的 Markdown 文本。请以原始 PDF 作为布局、图像和上下文的真实依据。
|
||
|
||
请根据提供的 Markdown 和 PDF 执行以下四项操作:
|
||
|
||
1. **清理多余字符**:查看 Markdown 文本,删除原始 PDF 中不存在的任何转换伪影或奇怪格式。
|
||
2. **解释图像内容**:参考 PDF 中的图表、示意图和图像,在图像引用后添加清晰的解释。
|
||
3. **更正列表格式**:转换可能使嵌套列表扁平化。分析 PDF 中的列表结构,并在 Markdown 中恢复正确的多级缩进。
|
||
4. **更正数学公式和符号**:将纯文字公式转换为正确的公式表达,例如 `Kmin` 应使用 `$K_{min}`,`E = hc/λ`,应使用 `$E = \\frac{hc}{\\lambda}$`
|
||
5. **调整标题**:将相同层级的同名标题按照小节内的不同内容重新命名,避免同层级同名标题出现,并且确保大纲的清晰性。
|
||
6. **翻译成中文**:将整个清理和更正后的文档翻译成简体中文。当您遇到专业或技术术语时,您必须在其译文旁边保留原始英文术语并用括号括起来。
|
||
|
||
只需要输出调整翻译后的 markdown 文本,不需要任何其他的文字内容。
|
||
"""
|
||
|
||
human_message_parts = [
|
||
{
|
||
"type": "media",
|
||
"mime_type": "text/markdown",
|
||
"data": base64.b64encode(markdown_content).decode("utf-8"),
|
||
},
|
||
]
|
||
|
||
# Find all image references in the markdown content
|
||
image_paths = re.findall(r"!\[.*?\]\((.*?)\)", markdown_text)
|
||
markdown_dir = os.path.dirname(markdown_path)
|
||
|
||
if image_paths:
|
||
print(f"Found {len(image_paths)} image references in the markdown file.")
|
||
for image_path in image_paths:
|
||
# Construct the full path to the image file
|
||
full_image_path = os.path.join(markdown_dir, image_path)
|
||
if os.path.exists(full_image_path):
|
||
with open(full_image_path, "rb") as f:
|
||
image_data = f.read()
|
||
|
||
human_message_parts.append(
|
||
{
|
||
"type": "text",
|
||
"text": f"这是图片 '{os.path.basename(image_path)}':\n",
|
||
}
|
||
)
|
||
human_message_parts.append(
|
||
{
|
||
"type": "media",
|
||
"mime_type": "image/png",
|
||
"data": base64.b64encode(image_data).decode("utf-8"),
|
||
}
|
||
)
|
||
else:
|
||
print(f"Warning: Image file not found at {full_image_path}")
|
||
|
||
human_message_parts.extend(
|
||
[
|
||
{
|
||
"type": "text",
|
||
"text": "这是原始的PDF文件:\n",
|
||
},
|
||
{
|
||
"type": "media",
|
||
"mime_type": "application/pdf",
|
||
"data": base64.b64encode(pdf_bytes).decode("utf-8"),
|
||
},
|
||
]
|
||
)
|
||
|
||
message_content = [
|
||
SystemMessage(prompt),
|
||
HumanMessage(human_message_parts),
|
||
]
|
||
|
||
print(
|
||
"Sending request to Gemini with the PDF, Markdown and referenced images... This may take a moment."
|
||
)
|
||
try:
|
||
response = llm.invoke(message_content)
|
||
refined_content = response.content
|
||
except Exception as e:
|
||
print(f"An error occurred while invoking the LLM: {e}")
|
||
return
|
||
|
||
refined_output_path = os.path.splitext(markdown_path)[0] + "_refined_zh.md"
|
||
with open(refined_output_path, "w", encoding="utf-8") as f:
|
||
f.write(str(refined_content))
|
||
|
||
print(f"Task complete! Refined and translated file saved to: {refined_output_path}")
|
||
|
||
|
||
def main():
|
||
input_dir = "input"
|
||
output_dir = "output"
|
||
os.makedirs(output_dir, exist_ok=True)
|
||
|
||
pdf_files = [f for f in os.listdir(input_dir) if f.endswith(".pdf")]
|
||
|
||
if not pdf_files:
|
||
print(f"Error: No PDF files found in the '{input_dir}' directory.")
|
||
sys.exit(1)
|
||
|
||
for fileName in pdf_files:
|
||
print(f"\nProcessing file: {fileName}")
|
||
input_doc_path = os.path.join(input_dir, fileName)
|
||
output_md_path = os.path.join(output_dir, fileName.replace(".pdf", ".md"))
|
||
|
||
# Step 1: Convert PDF to Markdown
|
||
convert_pdf_to_markdown(input_doc_path, output_md_path)
|
||
|
||
# Step 2: Simplify image references
|
||
simplify_image_references_in_markdown(output_md_path)
|
||
|
||
# # Step 3: Refine and translate the content
|
||
refine_and_translate_content(output_md_path, input_doc_path)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|