mirror of
https://github.com/bestnite/slide-translate.git
synced 2025-10-28 01:11:17 +00:00
init
This commit is contained in:
208
main.py
Normal file
208
main.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import base64
|
||||
import os
|
||||
import re
|
||||
import configparser
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
PdfPipelineOptions,
|
||||
)
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling_core.types.doc.base import ImageRefMode
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
|
||||
|
||||
def convert_pdf_to_markdown(input_doc_path, output_md_path):
|
||||
"""Converts a PDF document to Markdown format."""
|
||||
accelerator_options = AcceleratorOptions(
|
||||
num_threads=8, device=AcceleratorDevice.CUDA
|
||||
)
|
||||
|
||||
pipeline_options = PdfPipelineOptions()
|
||||
pipeline_options.accelerator_options = accelerator_options
|
||||
pipeline_options.do_ocr = True
|
||||
pipeline_options.do_table_structure = True
|
||||
pipeline_options.table_structure_options.do_cell_matching = True
|
||||
pipeline_options.generate_page_images = True
|
||||
pipeline_options.generate_picture_images = True
|
||||
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
InputFormat.PDF: PdfFormatOption(
|
||||
pipeline_options=pipeline_options,
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
# Enable the profiling to measure the time spent
|
||||
settings.debug.profile_pipeline_timings = True
|
||||
|
||||
# Convert the document
|
||||
print(f"Converting {input_doc_path} to Markdown...")
|
||||
conversion_result = converter.convert(input_doc_path)
|
||||
doc = conversion_result.document
|
||||
|
||||
# List with total time per document
|
||||
doc_conversion_secs = conversion_result.timings["pipeline_total"].times
|
||||
|
||||
doc.save_as_markdown(
|
||||
filename=Path(output_md_path),
|
||||
artifacts_dir=Path(os.path.join(os.path.splitext(os.path.basename(output_md_path))[0], "image")),
|
||||
image_mode=ImageRefMode.REFERENCED,
|
||||
)
|
||||
print(f"Conversion took: {doc_conversion_secs} seconds")
|
||||
print(f"Markdown file saved to: {output_md_path}")
|
||||
|
||||
|
||||
def simplify_image_references_in_markdown(markdown_path):
|
||||
"""Simplifies image names in the markdown file and renames the image files."""
|
||||
print(f"Simplifying image references in {markdown_path}...")
|
||||
with open(markdown_path, "r+", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
|
||||
# Find all unique image paths
|
||||
image_paths = set(re.findall(r"\((\S*?image_\d{6}_[a-f0-9]+\.png)\)", content))
|
||||
|
||||
for old_path in image_paths:
|
||||
old_path_prefix = os.path.join("output", old_path)
|
||||
if not os.path.exists(path=old_path_prefix):
|
||||
continue
|
||||
|
||||
directory = os.path.dirname(old_path_prefix)
|
||||
old_filename = os.path.basename(old_path_prefix)
|
||||
|
||||
# Create new filename, e.g., image_000000.png
|
||||
parts = old_filename.split("_")
|
||||
new_filename = f"{parts[0]}_{parts[1]}.png"
|
||||
new_path = os.path.join(directory, new_filename)
|
||||
|
||||
# Rename the physical file
|
||||
if not os.path.exists(new_path):
|
||||
os.rename(old_path_prefix, new_path)
|
||||
|
||||
# Replace the path in the markdown content
|
||||
new_path_in_markdown = new_path.replace(f"output{os.sep}", "")
|
||||
content = content.replace(old_path, new_path_in_markdown)
|
||||
|
||||
# Go back to the beginning of the file and write the modified content
|
||||
f.seek(0)
|
||||
f.write(content)
|
||||
f.truncate()
|
||||
print("Image references simplified.")
|
||||
|
||||
|
||||
def refine_and_translate_content(markdown_path, pdf_path):
|
||||
"""Refines and translates the Markdown content using an LLM."""
|
||||
print("Starting content refinement and translation...")
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
google_api_key = config.get('api_keys', 'GOOGLE_API_KEY', fallback=None)
|
||||
|
||||
if not google_api_key:
|
||||
print("Error: GOOGLE_API_KEY not found in config.ini")
|
||||
return
|
||||
|
||||
os.environ["GOOGLE_API_KEY"] = google_api_key
|
||||
try:
|
||||
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0)
|
||||
except Exception as e:
|
||||
print(
|
||||
f"Error initializing LLM. Make sure your Google API key is set correctly. Error: {e}"
|
||||
)
|
||||
return
|
||||
|
||||
try:
|
||||
with open(markdown_path, "rb") as f:
|
||||
markdown_content = f.read()
|
||||
|
||||
with open(pdf_path, "rb") as pdf_file:
|
||||
pdf_bytes = pdf_file.read()
|
||||
|
||||
except FileNotFoundError as e:
|
||||
print(f"Error reading files: {e}")
|
||||
return
|
||||
|
||||
prompt = """
|
||||
您是一名专业的科技文档编辑和翻译。您的任务是润色一份从随附 PDF 文档自动转换而来的 Markdown 文本。请以原始 PDF 作为布局、图像和上下文的真实依据。
|
||||
|
||||
请根据提供的 Markdown 和 PDF 执行以下四项操作:
|
||||
|
||||
1. **清理多余字符**:查看 Markdown 文本,删除原始 PDF 中不存在的任何转换伪影或奇怪格式。
|
||||
2. **解释图像内容**:参考 PDF 中的图表、示意图和图像,在图像引用后添加清晰简洁的解释。
|
||||
3. **更正列表格式**:转换可能使嵌套列表扁平化。分析 PDF 中的列表结构,并在 Markdown 中恢复正确的多级缩进。
|
||||
4. **翻译成中文**:将整个清理和更正后的文档翻译成简体中文。当您遇到专业或技术术语时,您必须在其译文旁边保留原始英文术语并用括号括起来。
|
||||
|
||||
只需要输出调整翻译后的 markdown 文本,不需要任何其他的文字内容。
|
||||
"""
|
||||
|
||||
message_content = [
|
||||
SystemMessage(prompt),
|
||||
HumanMessage(
|
||||
[
|
||||
{
|
||||
"type": "media",
|
||||
"mime_type": "text/markdown",
|
||||
"data": base64.b64encode(markdown_content).decode("utf-8"),
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "这是原始的PDF文件:\n",
|
||||
},
|
||||
{
|
||||
"type": "media",
|
||||
"mime_type": "application/pdf",
|
||||
"data": base64.b64encode(pdf_bytes).decode("utf-8"),
|
||||
},
|
||||
]
|
||||
),
|
||||
]
|
||||
|
||||
print(
|
||||
"Sending request to Gemini with the PDF and Markdown... This may take a moment."
|
||||
)
|
||||
try:
|
||||
response = llm.invoke(message_content)
|
||||
refined_content = response.content
|
||||
except Exception as e:
|
||||
print(f"An error occurred while invoking the LLM: {e}")
|
||||
return
|
||||
|
||||
refined_output_path = os.path.splitext(markdown_path)[0] + "_refined_zh.md"
|
||||
with open(refined_output_path, "w", encoding="utf-8") as f:
|
||||
f.write(str(refined_content))
|
||||
|
||||
print(f"Task complete! Refined and translated file saved to: {refined_output_path}")
|
||||
|
||||
|
||||
def main():
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: python main.py <pdf_file_name>")
|
||||
print("Example: python main.py material.pdf")
|
||||
print("Make sure you put pdf file into input directory")
|
||||
sys.exit(1)
|
||||
|
||||
fileName = sys.argv[1]
|
||||
if not fileName.endswith(".pdf"):
|
||||
print("Error: The provided file must be a PDF file (e.g., 08.pdf)")
|
||||
sys.exit(1)
|
||||
|
||||
input_doc_path = os.path.join("input", fileName)
|
||||
output_md_path = os.path.join("output", fileName.replace(".pdf", ".md"))
|
||||
|
||||
# Step 1: Convert PDF to Markdown
|
||||
convert_pdf_to_markdown(input_doc_path, output_md_path)
|
||||
|
||||
# Step 2: Simplify image references
|
||||
simplify_image_references_in_markdown(output_md_path)
|
||||
|
||||
# # Step 3: Refine and translate the content
|
||||
refine_and_translate_content(output_md_path, input_doc_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user